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Abstract—An existing search performance model for dis-
tributed passive sensor networks is extended to multistatic sensor
networks comprised of active sources and passive receivers. The
model provides an upper bound on the detection range of a
receiver in the field, and uses this bound to compute the expected
probability of successful search for a given target track. This
expected probability depends on the numbers of sources and
receivers in the field, their location distribution functions, and the
location and orientation of the track. For uniformly (randomly)
distributed sources and receivers, the distribution function for
the upper bound on receiver detection range can be computed
analytically in closed form. We show that the resulting estimates
of probability of successful search for uniformly distributed
multistatic fields is a reasonable approximation to more accurate
values obtained via Monte Carlo simulation for various numbers
of sources and receivers, and for various numbers of required
detections. We conclude with a discussion of how this model
may be used in designing and planning multistatic systems for
undersea surveillance.

I. INTRODUCTION

Automated detection of submerged moving targets is a

fundamental problem in undersea surveillance. Distributed sets

of unattended sensors provide a tremendous opportunity to

fulfill this mission in a cost-effective manner [1]. However, to

fully realize the benefits of spatially distributed sensors in the

undersea domain, the potential gains of a multistatic system,

comprised of a mixture of active sources and passive receivers

must be considered. It has been conjectured that such systems

may provide the best engineering design trade-offs, especially

for large search areas where the system design is constrained

by total cost. Development of useful tools to facilitate design

analysis studies is critical to realizing the potential benefit of

multistatic systems to ocean monitoring.

An enduring problem in the analysis of multistatic sys-

tems for undersea surveillance has been the lack of (even

approximate) closed-form analytical models of detection per-

formance. For design trade-off studies, such models are prefer-

able to simulation-based approaches (such as Monte Carlo

approaches), as they provide a mechanism to examine complex

parametric inter-dependencies in a manner that is computation-

ally unfeasible for strictly simulation-based studies of these

complex systems.

Our model for the detection performance of a multistatic

sensor field (or, more accurately, the search effectiveness of

the field, with successful search defined as a sequence of

target detections) is an extension of the model developed in

[2] for passive sensor fields. It is also similar in spirit to, and

shares common elements with, the Multistatic Performance

Prediction Methodology (MPPM) of Bowen and Mitnick [3].

Their performance model focuses on the probability that a

square grid of active sources and uniformly dispersed receivers

detects a target confined to a grid cell for a fixed number of

ping cycles. Their model, like ours, uses a bistatic version of

the sonar equation to determine areas of the surveillance region

that permit target detection by a receiver in the field. Both

models also use similar probabilistic arguments to construct

measures of field performance based on source and receiver

densities, though the two approaches differ significantly in

their notion of density.

Sensor density in [3] is taken to mean the number of sources

or receivers per unit area for uniformly (deterministically)

distributed sensors. Sources and receivers in our model are as-

sumed to be distributed according to spatial probability density

functions, so that their locations are not known precisely. Also,

the target in our approach is not confined to a sector of the

surveillance region, and our measure of system performance

(search effectiveness) is an explicit function of the number

of required detections. Single detection search effectiveness

of a fixed grid of regularly spaced sources and uniformly

(deterministically) dispersed receivers as in [3] is a special

case of our model.

The multistatic search effectiveness model that we develop

is an approximation that provides an upper bound on mul-

tistatic system performance in terms of engineering design

parameters. Thus, the model can be used by designers both to

select important system characteristics (i.e., source strength,

receiver gains, etc.), and to plan the specific deployment of

a multistatic field (i.e., source and receiver locations), as

described in [4]. In the next section, we review the analytical

framework developed in [2] for assessing the performance of

a distributed passive sensor network searching for a moving

target. Then, in Section III, the methodology is extended to

the multistatic problem through a sequence of approximations.

In Section IV we provide example calculations for uniformly

(randomly) distributed sources and receivers, and compare

these results to detailed (yet computationally cumbersome)

Monte Carlo simulations. We conclude in Section V with

recommendations for future work.
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II. REVIEW OF APPROACH FOR PASSIVE SENSOR FIELDS

A. Receiver Detection Range

Consider a field of NR receivers deployed in a region

A ⊂ R
2 to search for a target moving with constant speed

V and constant course θ over a time interval T = {t : t0 ≤
t ≤ t0 + ∆t}. The target location at any time t ∈ T is given
by ~xT (t) ∈ A. It is assumed that the receiver locations are
fixed, and that each receiver has the same search capability,

characterized by its ability to detect the target as it moves in

proximity to the receiver location. In particular, it is assumed

that the jth receiver, at location ~xRj
, detects the target with

probability Pd if the target comes within the detection range

Rd of the receiver sometime during the search interval T .
Using results from [5, Chapters 2 and 5], the detection range

Rd of a receiver can be determined from the passive sonar

equation. Specifically, if the target has a source level, in

decibels, of at least SL, then the jth receiver detects the target
at time t with probability Pd if

SL − TL(~xT (t), ~xRj
) ≥ TH, (1)

where TL is the transmission loss between points ~xT (t) and
~xRj
, and TH is an energy threshold that depends on the

environmental characteristics of the search region A (such
as ambient noise level), the physical characteristics of the

receiver (such as array gain), and detection and false alarm

requirements. If we assume further that the environment is

nearly uniform, such that the transmission loss between two

points in A follows a simple power law, then the jth receiver
detects the target at time t with probability Pd if

SL − m log rRj
(t) ≥ TH (2)

for some constant m > 0, where rRj
(t) is the distance from

the target to the jth receiver at time t. Solving this equation
for rRj

(t) gives

rRj
(t) ≤ 10

1
m

(SL−TH) ≡ Rd. (3)

For a passive sensor field and for the simplifying assumptions

listed above, the receiver detection range Rd is a constant. In

Section III, we show that the receiver detection range for a

multistatic sensor field is not a constant, but depends on the

location of the target, the number of sources, and the source

locations.

B. Receiver Detection Region for a Moving Target

For the purpose of this paper, it is convenient to express de-

tection events, and regions of A where receivers can detect the
target, in terms of set membership and set unions, respectively.

Let Ωt ⊂ A denote the set of all possible receiver locations
that permit target detection at time t, that is, the set of all
points in A that satisfy the inequality (3):

Ωt = {~x ∈ A : ‖~x − ~xT (t)‖ ≤ Rd}. (4)

Then the jth receiver detects the target with probability Pd

at time t if ~xRj
∈ Ωt. It follows that the jth receiver detects
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Fig. 1. Detection region Ω (solid blue lines) about target track for a passive
sensor field of receivers, each with detection range Rd.

the target with probability Pd at least once during the search

interval if

~xRj
∈

⋃

t∈T

Ωt ≡ Ω. (5)

The detection region Ω ⊂ A is depicted in Figure 1 for a target
moving along the y-axis through the middle of a square search
region A. We show in Section III that for a multistatic system,
the shape of the detection region Ω is, in general, much more
complicated than the “pill” shaped region of Figure 1, and

in fact depends on the distribution of sources in the search

region.

C. Probability of Successful Search for Receiver Network

In this paper, as in [2], the measure of search effectiveness

of the sensor field is the probability of successful search,

denoted PSS(k), and defined as the probability of getting
at least k detections (from k different receivers) during the
search interval. In the special case where Pd = 1, PSS(k)
is the probability of finding at least k of the NR receivers

in the detection region Ω. As described in [2], the field-level
probability of successful search depends on the sensor-level

probability of successful search, denoted p. This probability
is given in [2] by

p = 1 − exp(−Pd φ), (6)

where φ is the probability of finding a receiver in the detection
region Ω. If the receivers are randomly, independently and
identically distributed in A according to the density function
g : R

2 → R
+, then

φ =

∫

Ω

g(~x) d~x. (7)

Thus, when the receivers are uniformly (randomly) distributed

over the search region A, the probability of finding a receiver
in the detection region Ω is just the area of Ω divided by
the area of A. Given the sensor-level probability of success-
ful search p, the field-level probability of successful search
PSS(k) is defined in terms of NR independent Bernoulli trials



with success probability p and failure probability 1− p. Thus,
the probability of at least k distinct receivers detecting during
the search interval T , is given by [6, Chapter 3]

PSS(k) = 1 −
k−1
∑

ℓ=0

(

NR

ℓ

)

pℓ(1 − p)NR−ℓ (8)

for k = 0, 1, . . . , NR, where p is as in (6). From (6), (7), and
(8), we see that the field-level probability of successful search

PSS(k) for a passive system depends explicitly on a number of
quantities, including the number of receivers NR, the number

of required detections k, and the detection region Ω. We show
in the next section that the determination of PSS(k) for a
multistatic sensor field is considerably more complicated, as

the receiver detection region Ω about the target track depends
also on the number of sources, and their distribution over the

search region.

III. EXTENSION OF APPROACH TO MULTISTATIC

SENSOR FIELDS

Assume, as in Section II, a field of NR fixed receivers,

each with the same detection capability, independently and

identically distributed over the region A according to the
density function g : R

2 → R
+ to search for a constant-velocity

target over the time interval T . In addition to the receiver
field, consider a field of NS fixed sources, independently and

identically distributed over A according to the different density
function f : R

2 → R
+, each with the same source level SL

(in decibels). In this section, it is assumed that the search

capability of a receiver is characterized by its ability to detect

acoustic energy originating from a source and reflected off

the target, and to discriminate this energy from that received

directly from the source.

A. Receiver Detection Range

What is the detection range Rd for a receiver in this

multistatic sensor field? To answer this question, assume for

the moment that the ith source, at location ~xSi
, is the only

source in the field active during the search interval T , and that
it produces a source level SL(~xSi

, ~xT (t)) at target location
~xT (t). It is assumed that the distance traveled by the target in
the time it takes sound to travel from the source to the target

is negligible, and that the target reflects sound equally in all

directions and without loss. (The latter assumptions are clearly

unrealistic, but are adequate for the purpose of this paper,

which is to provide an upper bound on the search effectiveness

of a multistatic sensor field.) With these assumptions we have,

from (1) through (3), that if the ith source pings at time t
during the search interval T , then the jth receiver detects the
target at ~xT (t) with probability Pd if

rRj
(t) ≤ 10

1
m

[SL(~xSi
,~xT (t))−TH] ≡ Rd(~xSi

, ~xT (t)). (9)

Thus, for a bistatic sensor node, the receiver detection range

Rd is not a constant, but depends, in general, on the relative

locations of the source and the target.

It will be convenient to rewrite (9) in terms of the range

rSi
(t) from the ith source to the target at time t, and

the monostatic detection range r0, the latter defined as the

maximum range at which a monostatic sensor node (i.e., a co-

located source/receiver pair) can detect the target. To proceed,

we observe that the source level SL(~xSi
, ~xT (t)) at target

location ~xT (t) due to the ith source at time t is given by
SL−m log rSi

(t). Substituting this expression into (9) yields

rSi
(t) rRj

(t) ≤ 10
1
m

(SL−TH) ≡ r2
0, (10)

a well-known inequality in both bistatic sonar and radar (see,

for example, [7], [8]). For fixed and known source and receiver

locations, the set of all target locations ~xT (t) at time t that
satisfy the equality in (10) define a Cassini oval [9], the interior

of which is the set of all target locations at time t that are
detectable by the source/receiver pair (~xSi

, ~xRj
).

If the ith source is the only active source in the field during
the search interval T , then from (9) and (10) we have that the
receiver detection range at time t is a function of the range
from the ith source to the target at time t:

Rd(~xSi
, ~xT (t)) = r2

0/‖~xSi
− ~xT (t)‖ = r2

0/rSi
(t). (11)

Suppose now that all NS sources are active during the search

interval. What is their net effect on the receiver detection

range? To answer this question, we will assume further that

the distance traveled by the target in the time it takes to

complete one ping cycle, during which each source pings

exactly once, is small enough to assume that the sources ping

simultaneously. Then, from (11), if the target at location ~xT (t)
is detected with probability Pd at time t by the source/receiver
pair (~xSi

, ~xRj
), it is also detected with probability Pd at

time t by the pair (~xS(1)
(t), ~xRj

), where ~xS(1)
(t) denotes the

location of the nearest source to the target at time t. Under
this important simplifying assumption, the receiver detection

range at time t becomes

Rd(~xS(1)
(t), ~xT (t)) = r2

0/‖~xS(1)
(t) − ~xT (t)‖ = r2

0/rS(1)
(t).
(12)

The assumption of a short ping cycle implies that either

the number of sources in the field is relatively small, or

that intelligent processing techniques are used to distinguish

individual sources, as suggested in [10].

Since the source locations ~xSi
are assumed to be indepen-

dent and identically distributed random variables, it follows

that the ranges rSi
(t) from the sources to the target at time

t are random variables as well. Let fr(t) : R
+ → R

+ denote

the density function for the range from a source to the target

at time t. This density function may be difficult to compute
analytically even for the simplest source location distributions,

since it depends on the shape of the search region A and the
target location in the region. However, the density function

fr(t) can always be approximated to any degree of accuracy

by sampling from the source location density function f .
Moreover, once an approximation to fr(t) has been obtained,

the density function for the range rS(1)
(t) from the target to

the nearest source at time t can be obtained using the theory
of order statistics. Indeed, the density function for the nearest



range rS(1)
(t), given the density function fr(t) for the ranges

rSi
(t), is given by [11, Theorem 5.5.2],

fr(1)(t)(ρ) = NS fr(t)(ρ)[1 − Fr(t)(ρ)]NS−1, (13)

where Fr(t) is the distribution function associated with the

density function fr(t), that is,

Fr(t) =

∫ ρ

0

fr(t)(τ) dτ. (14)

Given the density function (13) for the range from the target

to the nearest source at time t, and expression (12) for the
receiver detection range Rd(~xS(1)

(t), ~xT (t)) at time t for the
multistatic sensor field, we can, in principle, obtain the density

function for Rd (or at least an approximation to this function to

any degree of accuracy by sampling from the source location

density function f ). Alternatively, the density function (13) can
be used to compute moments of the receiver detection range

Rd. In particular, the average value of Rd(~xS(1)
(t), ~xT (t)) at

time t, denoted R̄d(~xT (t)), is given by

R̄d(~xT (t)) = r2
0

∫ r2
0

1

fr(1)(t)(ρ)

ρ
dρ. (15)

Hence, given the assumptions listed above, the average value

of the receiver detection range Rd is a function of the mono-

static detection range r0 and the location ~xT (t) of the target
in the search region A; it depends implicitly on the number
of sources NS , and the source location density function f ,
through the density function fr(1)(t) on range from the target

to the nearest source.

B. Receiver Detection Region for a Moving Target

For multistatic sensor fields, the receiver detection region Ω
about a moving target’s track is complicated by the fact that

the receiver detection range Rd depends on the location of

the track, the number of sources, and the distribution of the

source locations in the field. Let Ωt ⊂ A denote the set of all
possible receiver locations that permit target detection at time

t, that is, the set of points in A that satisfy the inequality (9)
for the nearest source to the target at time t:

Ωt = {~x ∈ A : ‖~x − ~xT (t)‖ ≤ Rd(~xS(1)
(t), ~xT (t))}. (16)

For a purely active system, the sources must ping in order

for a receiver to detect the target. Let S ⊂ T denote the ping
schedule for the system, so that there is a detection opportunity

at time t if and only if t ∈ S. Then the jth receiver detects
the target with probability Pd at time t ∈ S if ~xRj

∈ Ωt.

Moreover, the jth receiver detects the target with probability
Pd at least once during the search interval if

~xRj
∈

⋃

t∈S

Ωt ≡ Ω. (17)

The receiver detection region Ω is depicted in Figures 2 and
3 for the scenario of Figure 1 and for fixed and known source

locations. The detection regions in these figures are for ideal-

ized multistatic fields with “continuous” ping schedules, that

is, with S = T . For a typical (i.e., discrete) ping schedule, the
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Fig. 2. Detection region Ω (solid blue lines) and average detection region Ω̄

(solid gold lines) about target track (dashed red line) for a multistatic sensor
field with NS = 1 source (filled green circle). A sample of NR receivers
from a uniform distribution are shown as unfilled blue circles.
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Fig. 3. Detection region Ω (solid blue lines) and average detection region Ω̄

(solid gold lines) about target track (dashed red line) for a multistatic sensor
field with NS = 5 sources (filled green circles). A sample of NR receivers
from a uniform distribution are shown as unfilled blue circles.

receiver detection region Ω may not be connected. However,
the continuous model for S provides an upper bound on Ω,
and hence an upper bound on the search effectiveness of the

sensor field.

The receiver detection regions shown in Figures 2 and 3 are

for known source locations. If these locations are not known,

then a reasonable alternative is to compute the expected

receiver detection region Ω̄ ≡
⋃

t∈S
Ω̄t, with the region Ω̄t

defined by

Ω̄t ≡ {~x ∈ A : ‖~x − ~xT (t)‖ ≤ R̄d(~xT (t))}, (18)

where the average receiver detection range R̄d(~xT (t)) for a
target at location ~x(t) is given by (15). The expected receiver
detection region Ω̄ for NS = 1 and NS = 5 sources, uniformly



(randomly) distributed in the search region A, are plotted in
Figures 2 and 3, respectively. These regions are computed by

sampling from the source location distribution f at a sequence
of points along the target track to estimate the density fr(1)(t)

at each point, and then using (15) to compute the average

receiver detection range R̄d at each of these points.

C. Probability of Successful Search for Multistatic Network

Our measure of the search effectiveness of multistatic sensor

fields is the same as that for passive sensor fields, namely

the probability of successful search PSS(k), defined as the
probability of getting at least k detections (from k different re-
ceivers) during the search interval T , and given by expressions
(6), (7), and (8). The only difference between the calculation of

PSS(k) for passive and multistatic fields is in the calculation
of the probability φ, given by (7), of finding a receiver in the
detection region Ω. Calculation of this probability involves
integrating the receiver location density function g over the
set Ω, and thus the difficulty of this calculation depends on
the shape of this region. This shape can be quite complicated

for multistatic sensor fields, as indicated by the examples in

Figures 2 and 3.

If the source locations are known, corresponding to a source

location density function f with equal amounts of probability
mass concentrated at each known source location, then the

receiver detection region Ω is given precisely by the union of
sets Ωt as defined by (16). Examples of Ω in this case are the
regions contained by the solid blue lines in Figures 2 and 3.

If the source locations are not known, then one approach is to

calculate PSS(k) for the average detection region Ω̄ given by
the union of sets Ω̄t as defined by (18). Examples of Ω̄ are the
regions contained by the solid gold lines in Figures 2 and 3.

We denote this search effectiveness measure by PSS(k;E[Ω])
to emphasize that averaging over the receiver detection region

Ω is internal to the probability of successful search calculation
in this case.

Another alternative for determining the search effectiveness

of the field when the source locations are not known precisely

is to compute the expected value of PSS(k) with respect
to the random variables that describe the receiver detection

region Ω. We denote the search effectiveness measure in this
case by E[PSS(k; Ω)] to emphasize that averaging over Ω is
external to the probability of successful search calculation.

In the remainder of this section, we propose an approxima-

tion to E[PSS(k; Ω)] that is straightforward to compute. In
Section IV we compare this approximation the approximation

PSS(k;E[Ω]), and with values of PSS(k) obtained through
Monte Carlo simulation.

Observe that the receiver detection range Rd given by (12)

is bounded from above by r2
0/r∗(1), where r∗i denotes the range

from the target to the ith source at closest-point-of-approach
(CPA), and r∗(1) denotes the CPA range for the source with the

smallest CPA range. Indeed,

r2
0

rS(1)
(t)

≤
r2
0

min
t

rS(1)
(t)

=
r2
0

min
t

min
i

rSi
(t)

=
r2
0

min
i

min
t

rSi
(t)

=
r2
0

min
i

r∗i
=

r2
0

r∗(1)
. (19)

Let Ω∗
t ≡ Ω∗

t (R
∗
d) denote the detection region with radius

R∗
d = r2

0/r∗(1) about the target at location ~xT (t), that is,

Ω∗
t (R

∗
d) = {~x ∈ A : ‖~x − ~xT (t)‖ ≤ R∗

d}, (20)

and let Ω∗ ≡ Ω∗(R∗
d) =

⋃

t∈S
Ω∗

t (R
∗
d). Then Ω ⊂ Ω∗, and the

probability of successful search PSS(k; Ω∗) associated with
the receiver detection region Ω∗ is an upper bound for the

probability of successful search PSS(k; Ω) associated with the
region Ω. Moreover, given the density function fr∗

(1)
for the

random variable r∗(1), the density function fR∗

d
for the upper

bound detection range R∗
d can be obtained, and the expected

value of PSS(k; Ω∗) can be computed via the integral

E[PSS(k; Ω∗)] =

∫

PSS(k; Ω∗(R)) fR∗

d
(R) dR. (21)

IV. EXAMPLE: UNIFORM SOURCE AND RECEIVER

DISTRIBUTIONS

Consider the example of Figures 2 and 3, where the search

region A is a 2L × 2L box centered at the origin, and
the sources and receivers are identically and independently

distributed uniformly (randomly) over A. The target track for
this scenario begins at location ~xT (t0) = (0,−L) and ends at
location ~xT (t0 + ∆t) = (0, L). Evidently, the CPA range r∗i
from the ith source at location ~xSi

= (xSi
, ySi

) to the target
track is equal to |xSi

|, and since xSi
is distributed uniformly in

the interval [−L,L], it follows that r∗i is distributed uniformly
in the the interval [0, L]. Thus, the density function fr∗

i
for

the CPA range from the ith source to the target track is given
by

fr∗
i
(ρ) =

{

1
L , 0 ≤ ρ ≤ L,

0, otherwise.
(22)

Given this density function, the density function fr∗
(1)
for the

smallest CPA range r∗(1) is obtained using well known results
from the theory of order statistics, specifically [11, Theorem

5.5.2]:

fr∗
(1)

(ρ) =







NS

L

(

L−ρ
L

)NS−1

, 0 ≤ ρ ≤ L,

0, otherwise.
(23)

Finally, the density function for the upper bound detection

range R∗
d = r2

0/r∗(1) is obtained from (23) using standard
procedures for transformations of random variables. The result

is

fR∗

d
(R) =







NS

L−r2
0/L

(

L−r2
0/R

L−r2
0/L

)NS−1
r2
0

R2 ,
r2
0

L ≤ R ≤ L,

0, otherwise.
(24)



For this scenario, the receiver detection region Ω∗(R) for a
given detection range R is just the locus of points in A with
x-coordinates within R of the target track. It follows that the
probability φ of finding a receiver in Ω∗(R) is just φ =
R/L. Substituting this result into (6) gives the sensor-level
probability of successful search p in terms of the detection
range R:

p = 1 − exp(−Pd R/L). (25)

Expressions (25) and (8) then combine to give the field-level

probability of successful search as a function of the detection

range R. This result, combined with the upper bound detection
range density function (24), can be used in (21) to compute

the average value of probability of successful search for the

upper bound receiver detection region Ω∗.

The expected probability of successful search

E[PSS(k; Ω∗)] for the scenario described in this section
is plotted (with gray dashed lines) in Figures 4 through 6 as

a function of the number of the number of receivers NR for

various values of number of sources NS , monostatic detection

range r0, and required detections k. The search area for this
example is a 5 kilometer by 5 kilometer box. For comparison,

the probability of successful search PSS(k;E[Ω]) based on
the expected receiver detection region Ω̄ = E[Ω] is also
plotted (with orange dotted lines) in these figures, as well

as the the probability of successful search computed via

Monte Carlo simulation (plotted with solid purple lines). For

each of the simulations and each value of NR (from 5 to 50

receivers), we sampled 10,000 sets of NS sources and NR

receivers uniformly (randomly) distributed over the search

region A, and counted the number of trials for which at least
k distinct receivers detected the target (at least once) during
the search interval T for a specified value of k.
The plots in Figure 4 are for k = 1 required detection
and a monostatic detection range r0 = 500 meters, and show
how probability of successful search varies as a function of

the number of sources NS (for 1, 5, and 10 sources). Not

surprisingly, this probability increases with the numbers of

sources and receivers. In all cases, the two approximations

for PSS(k) show good agreement with the curve obtained
from Monte Carlo simulation. In particular, the curve for

the expected probability of successful search E[PSS(k; Ω∗)]
bounds the simulation curve from above in all cases shown.

We note, however, that this is not guaranteed; indeed, while it

is true that PSS(k; Ω∗) is an upper bound for PSS(k) in all
cases, this does does not imply PSS(k) ≤ E[PSS(k; Ω∗)].
Figure 5 show similar plots, but for k = 3 required

detections. The two approximations for PSS(k) are not as
close to the values for PSS(k) obtained from simulation
in this case, particularly with respect to the approximation

PSS(k;E[Ω]). Nevertheless, all three curves exhibit similar
trends with increasing numbers of sources and receivers, and

the expected probability of successful search E[PSS(k; Ω∗)]
curves bound the simulation curves from above in almost all

cases, except for those with small numbers of receivers (for

example, in the case NR = 5 and NS = 10).

The final set of plots, in Figure 6, are for k = 3 required
detections and NS = 5 sources, and show how probability
of successful search varies as a function of the monostatic

detection range r0 (for 300, 500, and 700 meters). The

agreement between our two approximations for probability of

successful search and the values of PSS(k) obtained via sim-
ulation clearly improves with increasing monostatic detection

range. Again, in almost all cases the expected probability of

successful search E[PSS(k; Ω∗)] curves bound the simulation
curves from above.

V. SUMMARY, CONCLUSIONS, AND FUTURE WORK

We have developed an approximate performance model

for undersea surveillance using multistatic sensor fields. The

model provides an upper bound on the field-level detection

performance that is achievable by systems comprised of sep-

arate sources and receivers, even in scenarios when multiple

source/receiver detections are required for field-level detec-

tion decisions. The model’s effectiveness and accuracy were

demonstrated against simulated examples of varying numbers

of sources and receivers in a homogeneous environment. These

simulation comparisons showed good agreement between the

model predictions and computationally cumbersome Monte

Carlo simulations.

This performance model for multistatic sensor fields was

developed as an extension of an existing performance model

for distributed passive sensor networks that relies on a spatial

density description of the sensor locations. One major ben-

efit of these density-based approaches is their computational

efficiency when compared to conventional Monte Carlo type,

simulation-based approaches to field performance modeling.

Furthermore, by using this density-based approach, we expect

to readily adapt previous work in cost-effective passive sensor

field sizing [1] to the sizing of multistatic fields. Other areas

of current investigation include the use of these models in

optimal positioning of sensor nodes for field control, as well

as their use in providing computationally efficient methods to

adapt a field to environmental changes.
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(a) k = 1, NS = 1.
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(b) k = 1, NS = 5.
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(c) k = 1, NS = 10.

Fig. 4. Search effectiveness, for k = 1 required detections, of multistatic
sensor field with various numbers of sources NS and a monostatic detection
range r0 = 500 m.



10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Receivers

Probability of Successful Search

Monte Carlo
P
SS
(k;E[Ω])

E[P
SS
(k;Ω

*
)]

(a) k = 3, NS = 1.
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(b) k = 3, NS = 5.
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(c) k = 3, NS = 10.

Fig. 5. Search effectiveness, for k = 3 required detections, of multistatic
sensor field with various numbers of sources NS and a monostatic detection
range r0 = 500 m.
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(a) k = 3, r0 = 300 m.
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(b) k = 3, r0 = 500 m.
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(c) k = 3, r0 = 700 m.

Fig. 6. Search effectiveness, for k = 3 required detections, of multistatic
sensor field NS = 5 sources and various values for monostatic detection
range r0.
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